Realistic knowledge-based waiting times for radiotherapy patients

Addressing the pain of waiting

Ackeem Joseph
AQPMC Student Day
December 4, 2015
Realistic knowledge-based waiting times for radiotherapy patients – addressing the pain of waiting

Winners of Q+ Challenge 2014
Patients experience...
...3 different types of waiting in radiation oncology

1. Treatment planning
 - Waiting at home by the phone
 - Can last days to weeks

2. Daily-fractionated treatments
 - Waiting in the waiting room
 - Can last minutes to hours

3. Consultations with physician
 - Waiting in the waiting room
 - Can last minutes to hours

• Difficult for staff to predict.

• Only rough estimates are given based on experience.

Can we build an algorithm to accurately predict how long a patient is expected to wait?
Solution: Machine learning

• **Goal:** To provide radiotherapy patients with *personalized predictions* regarding how long they will wait for the provision of care in the Department of Radiation Oncology at the MUHC

• **How:** Learn data from previous patients to make predictions for future patients.
What is machine learning?

- **Subfield of Artificial Intelligence**

- **Learning**: Any process by which a system improves from experience

- **Machine Learning**: Written computer programs that automatically improve their performance through experience

- They are programs that can **learn from data**
Why machine learning?

• Develop systems that can automatically adapt themselves to individual users
 • Personalized information

• Discover new knowledge from large databases
 • Data mining, correlations (ex: beer and diapers)

• Mimic human thought-process to replace monotonous/laborious tasks

• Tackle systems that are too complex to construct analytically
 • Dynamic program instructions (ex: human brain)
How does ML work?

1. Define the problem
 • Not knowing how long to wait.

2. Define your dataset
 • Putting in historical patient information such as:
 • Time of the appointment, doctor, diagnosis, etc.
 • Getting out the duration of an appointment to infer a waiting estimate.

3. Choosing the right algorithm
 • There is no perfect model; only a model that is good enough.

4. Validate your algorithm
 • Divide your existing dataset into training and testing sets.
 • Cross-validate.
Appointment Timeline

On a typical treatment day for a particular resource

- **START**
- **IMRT**
- **SRS**
- **3D**
- **IMRT**
- **RA**
- **ELECTRON**
- **...**
- **END**

Grey: Past durations
(definite / already happened)

Red: Delays

Yellow: ML predictions
(duration)

Green: Total wait

Blue: Treatment type

Patient arrives
Checks in

Scheduled start of treatment

Actual start of treatment

--- Delayed by 10 mins

--- Expected 5 min delay

--- No delay expected

--- Expected 10 min delay
Defining features
Traits that can explain appointment delays

Patient
- Diagnosis
- Oncologist
- Treatment machine
- Age
- Day of the week
- Hour of the day
- Month
- Plan
- # of treatment fields
- Fraction number

Input (Vector) → ML Model → Output (Real Number)

Patient #1
-
-
- (Trait)

Patient #2
-
-
- (Trait)

Patient #3
-
-
- (Trait)
• ML relates closely to mathematical optimization theory

• Cost function for building a model

• Training means solving:

 \[
 \text{minimize } \frac{1}{2}\|w\|^2 \\
 \text{subject to } \begin{cases}
 y_i - \langle w, x_i \rangle - b \leq \epsilon \\
 \langle w, x_i \rangle + b - y_i \leq \epsilon
 \end{cases}
 \]

• In non-linear space, kernel functions are applied to transform feature space to linear space (Kernel trick)

• Replace \(x_i \) with \(\varphi(x_i) \) – Polynomial, Gaussian, Hyperbolic
Results
Results

Residual histogram

--- Mean error: 0.25 mins
--- Median error: 0.5 mins
--- Standard deviation: ~8 mins
Conclusion

• Machine learning can be successfully applied to waiting times in Radiation Oncology.

• Future work
 • Feature analysis (correlations, patterns)
 • Algorithm tuning (optimization parameters)
 • Exploring the code (Python scripts)
 • Communicate waiting times to patients (patient app)
 • Gather feedback from patients

• This can have a significant impact on patient lives and staff workflow!
Thanks!

AJ acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)